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In this paper, we study diagonally implicit Runge-Kutta~Nystrom methods (DIRKN
methods) for use on parallel computers. These methods are obtained by diagonally implicit
iteration of fully implicit Runge-Kutta—Nystrém methods (corrector methods). The number
of iterations is chosen such that the method has the same order of accuracy as the corrector, and
the iteration parameters serve to make the method at least A-stable. Since a large number of
the stages can be computed in parallel, the methods are very efficient on parallel computers. We
derive a number of A-stable, strongly A-stable and L-stable DIRKN methods of order p with
s*(p) sequential, singly diagonal-implicit stages where s*(p) = [(p + 1)/2] ors*(p) = [(p + 1)/2]
+1, [-] denoting the integer part function.

Keywords: Diagonally implicit Runge-Kutta—Nystr6m methods, predictor-corrector
methods, parallelism.

Subject classification: 65M 12, 65M20.

1. Introduction

Consider the initial-value problem for systems of special second-order, ordinary
differential equations (ODEs) of dimension d

Y'(0)=fp(), ¥y(t) =yo ¥ ()= 0
y:R=>RY f:RY>RY 1) <t<tend- (1.1)

One possibility for solving such problems is the use of singly diagonal-implicit
Runge-Kutta-Nystrém methods (SDIRKN methods). Compared with linear mul-
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tistep methods (LM methods), SDIRKN methods have the disadvantage of requir-
ing the solution of a sequence of implicit systems of dimension d per step, whereas
LM methods require the solution of only one such system per step. On the other
hand, a number of SDIRKN methods available in the literature possess excellent-
stability properties (cf. [17]), which are much better than those of the LM methods
derived from the backward differentiation methods for first-order ODEs. In spite
of that, LM methods are still more popular than SDIRKN methods, because of
their lower costs on a sequential computer. However, on parallel computers, this
situation may change. In this paper, we shall construct DIRKN methods tuned to
parallel computers, such that each processor has to compute relatively few stages
sequentially. We require that on each processor, these stages are singly diagonal-
implicit, so that effectively the sequential costs of the parallel DIRKN method
(PDIRKN method) are equal to those of an SDIRKN method. In fact, these meth-
ods are based on a fixed number of iterations of k-stage indirect RKN methods of
Radau ITA and Gauss-Legendre type (methods of indirect type are understood to
be methods that are derived by applying an RK method for first-order ODEs to the
first-order form of (1.1)). Furthermore, the iteration parameters are chosen such
that A-stability is obtained as soon as the order of the corrector is reached. The re-
sulting methods require k = [(p + 1)/2] processors, where p denotes the order and
[-] denotes the integer part function. We present a number of A-stable, strongly A-

Table 1

DIRKN methods of order p requiring s* singly diagonal-implicit, sequential stages on k processors.
Method )4 s k Main properties : Type
Nersett [15] 3 p-1 1 A-stable indirect
Crouzeix [6] 3 p-1 1 Strongly A-stable indirect
Sharpetal.[17] 3 p-1 1 A-stable, reduced phaselag direct
Cash[3],Cashand Liem[4] 3 P 1 S-stable indirect
Burrage (1] 3 p+1 1 A-stable, B-convergent direct
Norsett and Thomsen [16] 3 p+1 1 L-stable indirect
Iserles and Nersett [12] 4 p-2 2 L-stable indirect
Norsett [15] 4 p-1 1 A-stable indirect
Sharpetal.[17] . 4 p-1 1 A-stable, reduced phaselag direct
Cash[3],Cashand Liem[4] 4 p+1 1 S-stable indirect
Cooper and Sayfy [5] 5 p 1 A-stable indirect
Vander Houwenetal. [9] 5 p 3 L-stable indirect
Cooperf.nd Sayfy[5] 6 p-1 1 A-stable indirect
Sommeijer [18] 6 p-1 3 A-stable indirect
Van der Houwenet al. [9] 6 )4 3 L-stable indirect

Van der Houwenet al. [9] 7 p+1 L-stable indirect

L-stable indirect

& b
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stable and L-stable PDIRKN methods of order p with s*(p) sequential, singly diag-
onal-implicit stages, where s*(p) = [(p + 1) /2] ors*(p) = [(p + 1)/2] + 1.

In order to appreciate these methods, we have summarized in table 1 the charac-
teristics of a number of SDIRKN-type methods of orders p = 3 until p = 8. We in-
cluded DIRKN methods of both direct and indirect type (for a specification of
indirect RKN methods we refer to [10] and to the appendix of [14]). Furthermore,
we also listed a few indirect parallel DIRKN methods derived from parallel DIRK
methods. Both the sequential and parallel methods are (effectively) singly diago-
nal- implicit, so that the number of sequential stages s* refers to the number of sin-
gly diagonal-implicit stages to be computed on each of the k processors.

By means of numerical experiments we will compare the performance of the

methods constructed in this paper with that of a number of the methods listed in
table 1.

2. Diagonal-implicit iteration

Our starting point is a fully implicit Runge-Kutta—Nystrém (RKN) method of
the form

k
Yny1 = Yn +hy;' +h22bt.f(yl)!

i=1

k
y;;+1 =y:,+th,-f(Y,—),

i=1

k
Y=y, +chy, + 1Y aif(¥), i=1,...k, (2.1a)
Jj=1
where b= (b;),c = (¢;) and d = (d;) are k-dimensional vectors, and 4 = (ay)
is a nonsingular k-by-k matrix. This method will be referred to as the corrector
method. o . _
We employ a similar iteration technique as applied in [1 1] which automatically
leads to DIRKN methods. Let Y,(” ) denote the pth iterate to Y;, and define the
transformed stage vector quantities X;and X 2

X;=Yi—x, X¥W=¥¥_x, x=y+chy, i=1...k (21b)

These new variables are introduced in order to rf,du?e round-off errors (cf.
[8,p.128]). In terms of X; and x;, the stage vector equationin (2.1a) reads

k
X =Y af(Xj+x), i=1....k. (2.1'a)
j=1
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For each of these equations, we define the iteration process

k

X - s (X + x) = I (Z agf (XD + ) - 8p (X0 + x») . (22a)
j=1

where i=1,...,k;p=1,...,m, the § are positive iteration parameters, and

where the initial approximations X ,.0 are to be provided by means of a predictor

formula.

In this paper, we shall try to determine the iteration parameters such that the
method is A-stable, strongly A-stable or L-stable as soon as the order of the correc-
tor is reached. As we will see in sections 3 and 4, this can be achieved for a number
of correctors derived from classical collocation correctors for first-order equa-
tions (indirect collocation correctors, specified in the appendix of the institute re-
port [14]) using one-step predictor formulas of the form

X0 = p5n2r(x0 + %)), i=1,...k, (2.2b)

where either § = 0 or § = 1. These formulas will be referred to as predictor formu-
las of type I and II, respectively. The type I predictor Y( ) = x; = Yn + cihy, is the
trivial “last step value” predictor, which does not mtroduce amplification of stiff
error components and does not require any additional computational effort. The
type II predictor Y( ) = =y, + chy, + &R (Y 0)) is implicit and may be considered
as a “backward Euler type” predictor. Its strong stability properties may have a
stabilizing effect on the whole method (strong damping of stiff components). For
example, in the case of Radau correctors, it is possible to achieve L-stability by
using type II predictors (see section 4). However, the price to be paid is an addi-
tional system of k implicit equations, the computational costs of which may be com-
puted as an additional iteration (notice that the predictor formula of type II can
use the same LU decomposition as needed in the subsequent iterations). Both types
of predictors are first-order accurate. Within the class of one-step predictors, it is

possible to achieve second-order accuracy. For example, we may define the explicit
predictor

k
=Y af ), i=1,... k.
j=1

However, such predictor formulas give rise to amplification of stiff components
and is not suitable for our purposes. Since we preferred to stay within the class
of one-step predictor—corrector methods, we did not investigate multistep
predictors.

In[11]it was shown that the formulas for the step values defined in the corrector
(2.1)can be presented in the form

yn+l yn+hyn+2al iy yn+l—yn+h—12ﬁl is

i=1
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bodyO>where ; and §; are the components of the vectors g :— bTA  B:=d" 4.

This suggests defining the step values y,,, and y/, +1 corresponding to the iterated
method as

k k
Yurt =Vuthy,+ 3 aX(™ .y =y +ht Y ax™. 23)
i=1 i=1

Since @ and f are not available in the literature, we have listed these vectors for
the indirect collocation RKN correctors to be used in our numerical experiments
(table 2). For stiffly accurate RKN correctors as RadauIIA, a = e].

We remark that for m fixed the method {(2.2), (2.3)} fits into the class of
DIRKN methods that can be characterized by the Butcher array

x© 6D
xD | 4-D D
x@ O A-D D
(2.4)
X o o o0 0 A-D D
(R of of ... 0" »"4'(4-D) b'4"'D
oT of o ... of d'4'(4-D) d*4"'D

where D is the diagonal matrix with diagonal entries §;. However, in an actual
implementation, we shall use the representation {(2.2), (2.3)} which avoids f-eva-
luationsin the step point formula.

Table2

Vectors e and f for various indirect collocation RKN correctors.
Correctors p aandp

RadaulIA 3 p=(-9/2,5/2)7

Gauss-Legendre 4  a = (—1.732050807569, 1.732050807569)"
B = (—16.392304845413,4.392304845413)"

RadaulIA 5 B=(5.531972647422, ~7.531972647422,5)"
Gauss-Legendre 6  a=(5/3,-4/3,5/3)"
f = (32.909944487358, —16,7.090055512642)"

Radau IIA 7 = (—6.923488256444, 6.595237669626, —12.171749413180,17/2)" ]
Gauss-Legendre 8 (—1.640705321739, 1.214393969799, —1.214393969799, 1.640705321739) "
(—54.681428514064, 26.155201475250, —22.420557316693, 10.946784355507)

a
B
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Since the k systems that are to be solved in each iteration step of (2.2) can be
solved in parallel and each has a dimension equal to that of the system of ODEs, the
iteration process (2.2) is, on a k-processor computer, of the same computational
complexity as an (m + 6)-stage SDIRKN method on a one-processor computer.
Thus, the method {(2.2), (2.3)} has only s* := m + 0 sequential, singly diagonal-im-
plicit stages.

THEOREM 2.1
Let p be the order of the k-stage corrector method (2.1) and let
= [(p + 1)/2]. Then the method {(2.2), (2.3)} is an s-stage DIRKN method of
order p with s* sequential, singly diagonal-implicit stages, where s and s* are de-
finedbys =k{(p+1)/2] + 1 +6(k — 1) ands* = [(p + 1)/2] + 6.

Proof

The expressions for s and s* immediately follow from the Butcher array (2.4).
The order of the method is obtained by considering the iteration error of the meth-
od. Since (2.2b) defines a first-order predictor formula, we have X; O _ x, i
= O(h?). Furthermore, subtracting (2.1'a) and (2.2a) yields

X0 - X, = SI(F(XY +x) = f(Xi+ x)) =GR (FXP + x)

k
~f(Xi+x)) + 1Y ay(F(XP Y + x) = (X + %) -
j=1

Assuming that f has a bounded Lipschitz constant, it follows that X; W - X;
= o(h?)(x*V - x,),s0 that
X" _ x, = o(r+™. (2.5)

In order to avoid confusion, let us denote the step values associated with the correc-

tor by u,y1 and ), ;. Subtracting the corrector step values and the iterated step
values shows that

k
Unil = Pppr = D 0u(Xi — X)) = (™),
i=1

k
Uy = Vo = 1Y BulXi = X)) = O(R1+2m).

=1
Let y(¢) be the local exact solution. Then the local truncation error is given by
Y(tnr1) = Ypp1 = Y(tns1) = Ung1 + Uil — Yoy = O + O(H*2M)
Y (tns1) “y;x+1 =y (tnt1) — ”;u+1 + dn-{-l y£z+1 = O(th) + 0(h1+2m) ,  (2.6)

where p is the order of the corrector. Thus, we need only m = [(p + 1)/2] iterations
to reach the order of the corrector, sothats* :=m+6 = [(p + 1)/2] + 6. a
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It follows from (2.6) that there are three sources of local errors which together
constitute the global error, i.e., the truncation error of the corrector (of order p + 1)
and the iteration errors corresponding to y,,; and y,,, (of orders 2m + 2 and
2m+ 1).In addition to these orders, the order constants also play a role. The magni-
tude of the order constant associated with the corrector is usually rather small.
The order constants of the iteration errors decrease with m and are expected to be
rather large for small values of m (see also table 3). As the value of m is relatively
small, the iteration errors may easily dominate the global error, so that the order of
the corrector is not always shown in actual computation. For example, if the itera-
tion error corresponding to y,,, dominates, then the effective order p* is given by
p*=2m+1=2[(p+1)/2] + 1. Likewise, if the iteration error corresponding to
¥, dominates, then p* = 2m = 2[(p + 1)/2]. However, if the integration stepsize &
is sufficiently small, then the iteration errors should become negligible, so that the
truncation error of the corrector method dominates, and the theoretical order of
the corrector should be shown (see table 7).

3. Stability
The linear stability of the method {(2.2), (2.3)} is determined by applying it to

the scalar test equation y” = Ay, where )\ runs through the eigenvalues of 9f /9y,
which are supposed to be negative. Defining the matrix

Z(z) == 2|l —zD| ' [A = D], Py(z) :=z[I — z4]"'[4 — 6D}l — 6zD] ",

z:= M2, (3.1)

Unyl Ynt1 )
Wpil = , Uyl i= , (3.2)
i ( h, ) " < hyni1

itcan be shown (cf. [11]) that the following recursions hold:

and the vectors

Wnil — Oyl = m(z)vna

[ bTAT\Z™(2)Py(z)e  BTAT'Z™(2)Po(2)c
En(2) = (dTA“Z"’(z)Pg(z)e dTA~lzm(z)Pg(z)c>’ (3:3)

W1 = M(2)0,,

14+ 2BT(] — Az) e 14+26T(I - 42)7'¢c
M(Z) = i‘ ( i)l ¢ T( )_1 . (3’4)
zd" (I — Az)"'e 1+4zd (I-Az) ¢
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Hence, by eliminating the corrector values w,; from (3.3) and (3.4), we find the
recursion

Ony1 = [M(2) — En(2)]0n - (3.5)

We shall call the matrix M(z) — E,(z) the stability matrix of the method and its
spectral radius the stability function, i.e., the function:

Rn(z) = p([M(2) — En(2)).

The method {(2.2), (2.3)} is called A-stable if R,,(z) assumes values in (-1, 1) for
z<0, strongly A-stable if it is A-stable with R, (z) bounded away from 1 outside the
neighbourhood of the origin, and L- stable if it is A-stable with R,,(00) = 0.

Putting m = [(p + 1)/2], we obtain pth-order accuracy for any D. We shall ex-
ploit the matrix D to obtain pth-order A-stable, strongly A-stable or L-stable meth-
ods. However, it turns out that various choices of D generate such highly stable
methods. From these methods we selected the methods with smallest truncation er-
ror. Recalling that the truncation error of the PDIRKN method will usually be
dominated by the iteration error, we are led to consider the iteration error defined
by (3.3). Since the nonstiff error components in the iteration error corresponding to
small values of |z| are sufficiently damped by the matrix E,(z) (note that
E,(z) = O(z™*')), we shall concentrate on the stiff error components. From (3.2),
(3.3) and (3.4) it follows that

Wnil — Dnyl = Em(z)vn
= En(2)[M(2) — Em(2)]on-1
= En(2)[M(2) — En(2)]"v0.

Restricting our considerations to the iteration error associated with y,.;, we
deduce thatu,,; — yn+1 can be bounded by

41 = Yms1ll = [|€] Em(2)[M(2) — Emn(2)]"00]|
<|lef En(@I|[M(z) — En(2)]"]| 120l
~ const.n” ! R (2)]"||eT Em(2) ||[|lvo]] as n—> oo, (3.6)

where v denotes the maximum dimension of the Jordan box corresponding to the
maximum-modulus-eigenvalues of the matrix M (z) — E,,(z). This estimate shows
that the stiff error components can be suppressed if the stability function R,,(z) is
small for large |z|-values. We remark that a similar estimate can be derived for
.1 — Yni1- The following theorem may be helpful in selecting methods possessing
this property:

THEOREM 3.1

Let the predictor be given by (2.2b) and let the corrector (2.1) be obtained from
a consistent RK method for first-order equations given by the parameter arrays
{4*,b*, c}, then the following assertions hold:
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(a) If 8 =0, then

_ (1=(")T4* Qe 1- (b*)TA*ch)
Fnloc) =2 ( ~6)0ne 1= (6" Qe )’

QO = (A7) [ = [ - D7 (4)]"].
(b) If 6 =1, then R,(c0) = |1 — (b*)(4*)¢| for all m and D, and if the RK
method {4*, b*, ¢} is stiffly accurate, then Ry, (c0) = Oforallmand D.

Proof

If the corrector (2.1) is obtained from an RK method for first-order equations
{4*,b*, c}, then

A=A, b=, c=d'e, d=b". (3.7)

Furthermore, we have that Z(co) = I — D~'4 and Py(co) = (6 — 1)Z, where 6 is
either O or 1. Hence,

_ T _aT

Opo := A" I+ (0 — 1[I = D'4]™]. (3.8)

(a) On substitution of # = 0 and (3.7) into (3.8), part (a) is immediate.
(b) For § = 1 and using (3.7), we see that (3.8) reduces to

| 1- 97«9 1—- )"
Moo) — En(oo) = 1 &) (A4 e e ). s
—(6%) (4") e 1-(b7) (47) e
Because of the consistency we have that (b*)Te =1, so that the eigenvalues of
M(c0) — E,,(c0) are given by 1 — (b*)T(4*) 'e. If the corrector {4*, b*, ¢} s stiffly
accurate, then

efe=1, @) =ed, (39)

so that R,,(o0) vanishes for allm and D.

This theorem shows that for explicit predictors of type I (6 = 0), the behaviour
of the stability function at infinity depends on D, so that we can exploit the matrix
D by selecting methods with the smallest value R,(c0). It is interesting to note
that we obtained strongly A-stable PDIRKN methods although the corrector is
only A-stable (e.g., in the case of Gauss-Legendre correctors listed in table 3).

For implicit predictors of type II (§ = 1), the behaviour of the stability function
at infinity is completely determined by the corrector, so that D cannot be used for
selecting small values of R,,(co) in the estimate (3.6). However, (3.6) indicates that
the iteration error is also influenced by the magnitude of ||e] Enx(z)||. Since
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Table 3

PDIRKN methods of order p requiring s* singly diagonal-implicit, sequential stages on k processors.
{Predictor—Corrector} Iteration parameters; p s k  Stability Erax E,
{I-RadaullA} (11/200,107/225) 3 p—-1 2 StronglyA-stable 0.35 0.06
{I1-RadaulIA} (1/5,1/5) 3 p 2 L-stable 0.14 0.00
{I-Gauss-Legendre}  (1/5,11/20) 4 p-—2 2 StronglyA-stable 1.35 1.35
{II- Gauss-Legendre} (223/10000, 311/1000) 4 p—1 2 A-stable 0.25 0.00
{I-RadaulIA} (1/40,1/4,3/5) 5 p—2 3 StronglyA-stable 0.73 0.16
{l1-RadauIIA} (639/5000,17/1250,409/2500) 5 p—1 3 L-stable 0.51 0.00
{I-Gauss-Legendre} (1/5,1/2,3/4) 6 p—3 3 StronglyA-stable 1.44 0.51
{I1-Gauss-Legendre} (1/100,1/5,9/20) 6 p—2 3 A-stable 1.32 0.00
{I-RadaullA} (1/5,4/5,4/5,19/20) 7 p-3 4 StronglyA-stable 1.43 0.77
{I1-RadaulIA} (9/200,1/40,9/40,91/200) 7 p—-2 4 L-stable 1.09 0.00
{1-Gauss-Legendre}  (13/20,13/20,3/4,19/20) 8 p—4 4 StronglyA-stable 1.60 1.60
{I1-Gauss-Legendre} (1/10,1/5,3/10,2/5) 8 p—-3 4 A-stable 1.55 0.00

€] E,,(2) vanishes at infinity, we selected methods with a small value of ||e] E(2)||
in the whole interval (—oo0, 0).

Finally, we remark that the preceding discussion of the error u,4; — y,+1 can
also be given for the derivative error ), | — y,,, ,, presumably leading to other ma-
trices D. As a consequence, the PDIRKN methods using the D matrices indicated
above aim at problems where our first interest is in an accurate computation of the
solution y(z), rather thany'(z).

4. Survey of PDIRKN methods

In table 3, we list the main characteristics of the A-stable, strongly A-stable
and L-stable PDIRKN methods we found by means of the approach described in
the preceding sections. In this table, En,x denotes the maximum value of
||leF E(2)||, in the interval (—oo, 0) and E,, denotes the value of ||e] E(00)||... The
predictors are of the form (2.2b) with § = 0 (predictor I) and § = 1 (predictor II),
and the correctors used are the indirect collocation-type RKN methods based on
the Gauss—Legendre and Radau ITA RK methods for first-order equations. Speci-
fication of the parameters of the resulting methods can be found in the appendix
to[14].

Comparing the main characteristics of the methods listed in table 3 with those
listed in table 1, we conclude that the computational costs per step of the lower-
order methods (order three or four) are comparable, but the higher-order methods
in table 3 are much cheaper. On the other hand, the error constant Ep,, of the itera-
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tion error associated with y,,; is relatively large. However, as we have shown in
the discussion of theorem 2.1, the order in 4 of these iteration errors is also larger,
which may compensate the large error constants. Hence, we may hope for im-
proved efficiency for the new PDIRKN methods.

5. Numerical experiments

We shall numerically investigate the following aspects of the PDIRKN meth-
ods: (i) the stability, in particular, the damping of perturbations of the initial condi-
tions, (ii) the effective order, in relation to the order of the generating corrector,
(iii) the predictor, mutual comparison of the explicit and implicit predictor formu-
la, and (iv) the efficiency, in comparison with available sequential SDIRKN meth-
ods from the literature.

All problems are taken from the literature and possess exact solutions in closed
form. Initial (and boundary) conditions are taken from the exact solution. Most
experiments are performed on a 14 digit computer. Only the results reported in ta-
ble 7 are performed in double precision (28 digits). Furthermore, because of
round-off errors, we cannot expect 14 digits or 28 digits accuracy. As a conse-
quence, the tables of results do contain empty spots whenever the corresponding
numerical result was in the neighbourhood of the accuracy-limits of the machine
and therefore considered as unreliable.

5.1.STABILITY TEST

We first test the stability properties of the various PDIRKN methods by inte-
grating a nonautonomous problem with varying stiffness:

P —2a(t)+1 —a(t)+1
0= (-1 a2 )70

y(0)=(g), y’(0)=<—21), 0<t<T,
a)=V1+16+

1
. 5.1

Vise &1
The Jacobian matrix of the system has the eigenvalues —1 and —o(?), so that the
spectral radius, and therefore the stiffness, increases with z. We compared the nu-
merical solution of (5.1) with the numerical solution obtained by perturbing the in-
itial conditions, i.e., instead of the initial conditions y(0) and y'(0) we used the
initial conditions y(0) + ee and y’(0) + ce. Denoting the numerical solutions by y,
and y’, we may expect from any stable method that ||y, — y;|| does not increase
with . For various PDIRK N methods, table 4 lists the values
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Table 4
Values of the amplification factor C, for problem (5.1) with T =4000, n=4000 and with
T = 6000, n = 6000 for various Predictor-Corrector pairs.

Type I Methods ?  Cuoo Ce000 Type Il Methods P Camn Csooo

I-RadaullA 3 030E-23 0.84E-36 II-RadaullA 3 0.43E-11 0.35E-17

I-Gauss—-Legendre 4  0.44E-12  0.22E-18  II-Gauss-Legendre 4  0.44E-01 0.38E-01

I-RadaulIA 5 0.53E-29 048E-44 II-RadaullA 5  0.64E-01 0.67E-02

I-Gauss-Legendre 6  0.17E-23  0.12E-35 II-Gauss-Legendre 6 0.34E-13 0.93E-14

I-RadauIlA 7  0.88E-21 0.63E-31 II-RadaullA 7  0.40E-09 0.61E-15
8 8

1-Gauss—Legendre 0.53E-25 0.13E-38  II-Gauss—Legendre 0.44E-12 0.51E-13

Cn = ||yn = y:ll/Ilyo = ¥oll
= |y, = ¥ill/e for n=4000 and n = 6000.

The methods are specified by the generating Predictor—Corrector pair where the
predictor is indicated by its type. It turned out that C, is almost independent of € for
€<1/10. The results in table 4 demonstrate the strong damping of the initial pertur-
bation by all PDIRKN methods.

We remark that with respect to the scalar test equation (see also (3.6)), the estimate

19 = ¥3ll = llef (Min(2) = En(2))" (0 = ¥3)l
~ const.n” ! [R(2)]"e

shows that C, depends on the stability behaviour of the PDIRKN method for a par-
ticular value of z, and it is expected that for an A-stable PDIRKN method and a
given problem with specified stepsize, C, will decrease as n increases. This beha-
viour is demonstrated by the results listed in table 4.

Another observation is that for this linear problem, the explicit predictors give
a better damping than the implicit predictors. The damping effect turns out to be
strongly problem-dependent as is shown by the following example:

Y'(£) = —1000(y(z) — cos(2))® = cos(£), y(0) =1,(0) =0,0<:<T. (5.1')

Applying the same test strategy as before, the results listed in table 5 show that
the implicit and explicit predictors give rise to a similar damping effect for this pro-

blem. Moreover, the damping is much weaker when compared to the previous
example.

5.2. EFFECTIVE ORDER AND EFFICIENCY OF THE EXPLICIT AND IMPLICIT
PREDICTOR

In this section, we show that the effective order of the PDIRKN methods may
exceed the order of the corrector. In addition, we compare the efficiency of the
explicit and implicit predictor. In all experiments the accuracy is given by means of
the number of minimal correct digits (NCD) defined by NCD(h) = — log(|| global
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Table 5

Values of the amplification factor C, for problem (5.1°) with T = 1000, n = 10000 for various Predic-
tor— Corrector pairs.

Type IMethods P sk C, Type Il Methods » & kG

I-RadaullA 3 2 2 0.36E+00 II-RadaullA 3 3 2 0.63E+00
I-Gauss-Legendre 4 2 2 044E+00 II-Gauss-Legendre 4 3 2 0.12E+00
I-RadaullA 5 3 3  0.82E+00  II-RadaullA 5 4 3 058E+00
I-Gauss—Legendre 6 3 3 0.89E+00 II-Gauss— Legendre 6 4 3 0.10E+01
I-RadaulIA 7 4 4  0.10E+01 II-RadaulIA 7 5 4 0.64E+00
I- Gauss—Legendre 8 4 4  0.10E+01 II-Gauss—Legendre 8 5 4  048E+00

error at the endpoint of the integration interval || ), and the computational effort
is measured by the number of sequential stages per unit interval. The (fixed) step-
size is chosen such that the number of sequential stages per unit interval (approxi-
mately) equals a prescribed number M. To be more precise, let Nyeps denote the

total number of integration steps for the integration interval [to, T, then
M = Nyiepss* /(T — to), whichleads us to

_ [M(T - to) _T-1
.Nsteps —_ l:——;;'__' + 0.5], h == Nstcps 3

where [-] denotes the integer part function (the effect of the [-] operation causes
that the actual number of sequential stages may be slightly different from the pre-
scribed number M).

Table 6 lists results for the linear Kramarz problem (see [13])

w498 4998
YO =1\ _2409 _a999

)y(t), 0<1<100, (5.2)

Table 6
Effective order p* and values of NCD and M for problem (5.2).

Predictor-Corrector

)4 s* k M=25 M=50 M=100 M =200 p*
I-RadauITA 3 2 2 2.8 3.8 4.7 5.6 3
II-RadaullA 3 3 2 2.4 33 42 5.1 3
I- Gauss-Legendre 4 2 2 3.3 45 5.7 6.9 4
II- Gauss-Legendre 4 3 2 4.0 54 6.7 8.0 4
I-RadaullA 5 3 3 4.2 6.0 7.8 9.6 6
II-RadauIIA 5 4 3 5.1 6.8 8.5 10.0 5
I- Gauss-Legendre 6 3 3 3.9 5.8 7.6 9.4 6
II-Gauss—Legendre 6 4 3 4.6 6.7 8.8 11.0 7
I-RadaullA 7 4 4 4.5 6.9 9.3 12.0 8
II-RadaulA 7 5 4 5.4 8.1 10.8 9
I- Gauss-Legendre 8 4 4 44 6.8 9.2 12.8 8
I - Gauss-Legendre 8 5 4 52 7.7 10.1 8
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Table 7
Effective order p* and values of NCD and M for problem (5.2) obtained by some specified PDIRKN
methods with small stepsizes.

Predictor- Corrector  p s* k M =1800 M =1600 M =3200 M = 6400 p*
I-RadauIIA 5 3 3 13.1 14.8 16.5 18.1 53
II- Gauss-Legendre 6 4 3 15.3 17.3 19.2 21.0 6
I-RadaullA 7 4 4 16.5 18.7 20.9 7.3
II-RadauIlA 7 5 4 18.5 20.7 22.7 6.7

with exact solution y(f) = (2cos(z), — cos(#)). These results show that for some
higher-order methods (indicated in bold face), the measured effective order p* is
greater than p (see the discussion of theorem 2.1). In order to show that this “high-
er-order behaviour” is caused by a dominance of the iteration error, we applied
these “‘higher-order’’ PDIRKN methods again to the Kramarz problem (5.2), but
now with very small stepsizes. Using a high-precision computer (28 digits), we ob-
tained the results listed in table 7, showing that the corrector-order is more or less
retained.

Finally, we observe that usually the implicit predictor (type IT) produces better
results, in spite of the additional implicit stage. Therefore, in the following, we shall
confine our considerations to the type II predictor.

5.3. EFFICIENCY TESTS

In this section, we compare the efficiency of the PDIRKN method with methods
from the literature. We selected the following methods from table 1:

Table 8

Values of NCD and Mfor problem (5.2).

Methods P s* k M =25 M =50 M =100 M =200
Norsett; 3 2 1 2.1 3.0 3.9 4.8
SFB; 3 2 1 1.8 2.7 3.6 4.5
B; 3 4 1 1.2 2.1 3.0 3.9
II-RadaullA 3 3 2 24 33 4.2 5.1
Norsett, 4 3 1 2.8 3.8 49 6.1
SFB, 4 3 1 3.2 45 5.7 6.9
11 - Gauss—-Legendre 4 3 2 4.0 54 6.7 8.0
CSs 5 5 1 4.1 5.6 7.1 8.6
II-RadaullA 5 4 3 5.1 6.8 8.5 10.0
CSs 6 5 1 55 7.0 8.4 9.0
II- Gauss—Legendre 6 4 4.6 6.7 8.8 11.0
II-RadauIlA 7 5 4 5.4 8.1 10.8

II - Gauss-Legendre 8 5 4 52 7.7 10.1
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Norsett; third-order method of Nersett;
Norsetts fourth-order method of Nersett;
SFB; third-order method of Sharpetal,;
SFB,4 fourth-order method of Sharpetal.;

B; third-order method of Burrage;
CSs fifth-order method of Cooper and Sayfy;
CSs sixth-order method of Cooper and Sayfy.

5.3.1. Linear Kramarz problem

Table 8 presents results for these sequential methods and for our PDIRKN
methods when applied to the Kramarz problem (5.2). In most cases, the PDIRKN
methods are by far the most accurate ones. Notice that the CS¢ method does not
show its order 6 in the high accuracy range. This is caused by an insufficient accu-
racy of the method parameters. As a consequence, the CS¢ method may well be
competitive with the sixth-order PDIRKN method.

5.3.2. Linear Strehmel-Weiner problem
In[19] we find the following linear, stiff problem:

-20.2 0 -9.6 150 cos(10¢)
y'(1) = [ 7989.6 —10000 —6004.2 |y(¢)+ | 75cos(107) |,

-9.6 0 -58 75 cos(10¢)
0<<100, (5.3)

Table9

Values of NCD and Mfor problem (5.3).

Methods p s k M=100 M=200 M =400 M = 800

Narsett; 3 2 1 1.1 2.0 29 3.8

SFB; 3 2 1 0.8 1.7 2.6 35

B; 3 4 1 0.3 1.1 2.0 2.9

II- RadauIlA 3 3 2 1.4 2.3 32 4.1

Norsett, 4 3 1 1.2 2.5 3.8 5.0

SFB, 4 3 1 2.3 34 4.1 5.9

II- Gauss-Legendre 4 3 2 3.1 49 6.7 7.3

CSs 5 5 1 3.0 45 5.9 7.4

II-RadauIlA 5 4 3 4.9 6.6 7.6 9.0

CSs 6 5 1 3.6 5.5 7.5 8.2

IT- Gauss-Legendre 6 4 3 3.2 5.3 7.4 9.4

II-RadaullA 7 5 4 3.9 6.6 9.4 10.0

I1-'Gauss-Legendre 8 5 4 4.4 6.5 8.8 10.0
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with exact solution

cos(t) + 2 cos(5¢) — 2cos(10¢)
y(t) = | 2cos(t) + cos(5t) — cos(10z)

—2cos(t) + cos(5t) — cos(10¢)
Unlike the Kramarz problem, this problem has slowly and rapidly oscillating solu-
tion components (nonstiff and stiff solution components) which are appearing
with comparable weights. This implies a severe test for the PDIRKN methods
because of the strong damping, and therefore inaccurate approximation, of the stiff
solution components. In spite of that, they are generally superior to the sequential

methods. Again, taking into account the inaccurate method parameters of CSe,
we see from the results listed in table 9 that this method is competitive.

5.3.3. Nonlinear Strehmel-Weiner problem
In[19] we also find a nonlinear, stiff problem:

Yi(0) = 01(0) — y2(9))’ + 6368y (1) — 6384y,(t) + 42 cos(10¢) ,
Ya(t) = —(1(2) — y2(2))® + 12768y, () — 12784y, (f) + 42 cos(107)
0<<10, (5.4)

with exact solution y;(f) = y,(¢) = cos(4z) — cos(10¢) /2. Table 10 demonstrates
that the PDIRKN methods similarly compare with the sequential methods as for
thelinear Kramarz and Strehmel-Weiner problems.

Table 10

Values of NCD and Mfor problem (5.4).

Methods p s* k M=100 M=200 M =400 M =800
Nersett, 3 2 1 29 39 4.8 5.7
SFB, 3 2 1 2.7 3.6 45 5.4
B; 3 4 1 23 3.6 5.2 6.2
II-RadaullA 3 3 2 33 4.1 5.1 6.0
Nersetty 4 3 1 3.0 42 53 6.5
SFB, 4 3 1 3.7 49 6.1 7.3
II- Gauss—Legendre 4 3 2 4.8 6.1 7.4 8.7
CS;s 5 5 1 49 6.4 7.9 9.4
II-RadaullA 5 4 3 5.8 7.6 9.4 11.1
CSs 6 5 1 59 7.6 9.2 9.9
II- Gauss- Legendre 6 4 3 5.5 7.6 9.7 11.8
II-RadaullA 7 5 4 6.4 9.0 11.6

II- Gauss—Legendre 8 S 4 5.8 8.2 10.6
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5.3.4. Fehlberg problem
An often used test problem is the orbit equation (cf. [7])

Yit) = —aiy (1) - 220

RO +%0
21(0) w/2<t<3m, (5.5)

VY +¥3(0) ’

with the exact solution y;(f) = cos(#?), y»(f) = sin(#?). Results are presented in
table 11. Usually this type of equations has to be solved with stringent accuracy

demands. From table 11 we conclude that the high-order PDIRKN methods are
more efficient in the high accuracy range.

Yy (t) = =48y, (2) +

5.3.5. Semi-discrete partial differential equation
Consider the following initial-boundary-value problem (see [11]):
Pu__4ré
82 14 2x—2x20x2
with Dirichlet boundary conditions and exact solution u = (1+ 2x — 2x?)

cos(2wt). By using second-order symmetric spatial discretization on a uniform grid
with mesh Ax = 1/20 we obtain a set of 19 ODEs. Table 12 shows that the

+ 4r?ufdcos?(2mt) — 1], 0<z<1, 0<x<l, (5.6)

Table 11

Values of NCD and Mfor problem (5.5).

Methods p s k M=98 M=196 M=392 M="783
Norsett; 3 2 1 0.9 1.8 2.7 3.6
SFB; 3 2 1 0.6 1.5 2.4 33
B, 3 4 1 0.2 0.9 1.9 2.7
II-RadaulTA 3 3 2 0.9 2.0 2.9 4.0
Nersett, 4 3 1 0.7 1.5 2.7 4.0
SFB, 4 3 1 1.2 2.4 3.6 4.8
11 - Gauss—Legendre 4 3 2 1.7 3.2 4.5 5.9
CSs 5 5 1 1.7 3.1 4.7 6.2
II-RadauITA 5 4 3 2.1 3.8 5.6 7.3
CSe 6 5 1 1.9 35 5.3 7.1
II- Gauss—Legendre 6 4 3 1.2 3.1 5.1 7.2
II-RadaulIlA 7 5 4 1.1 33 5.9 8.5
II- Gauss~Legendre 8 5 4 1.1 3.2 5.6 8.0
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Table 12

Values of NCD and Mfor problem (5.6).

Methods D s* k M=200 M=400 M =800 M = 1600
Norsetts 3 2 1 35 43 5.1 5.9
SFB, 3 2 1 3.6 4.5 5.4 6.3
B; 3 4 1 * 43 5.4 6.4
II-RadaullA 3 3 2 3.7 5.1 6.0 6.8
Noarsetty 4 3 1 34 42 5.2 59
SFB4 4 3 1 5.5 6.4 7.6 8.8
II - Gauss-Legendre 4 3 2 5.0 6.3 7.8 9.2
CS; 5 5 1 4.0 5.3 6.6 17
II-RadaulIA 5 4 3 42 5.2 6.3 7.7
CSq 6 5 1 3.1 44 5.5 6.9
II - Gauss-Legendre 6 4 3 3.8 4.7 6.2 8.1
II-RadaullIA 7 5 4 4.7 6.0 85
II - Gauss-Legendre 8 5 4 3.6 44 5.5 7.0

PDIRKN methods are at least competitive and often more efficient than the
sequential methods of the same order.

6. Concluding remarks

In this paper, we have shown that diagonally implicit iteration of fully implicit,
pth-order RKN correctors leads to parallel DIRKN methods of order p with rela-
tively few sequential stages. For Radau IIA and Gauss-Legendre correctors, the
iteration parameters are determined in such a way that the methods are A-stable,
strongly A-stable or L-stable. Numerical experiments clearly demonstrate the

superiority of the parallel methods over most of the sequential SDIRKN methods
available in the literature.
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